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Abstract 

Tremor analysis plays a vital role in understanding motor control disorders and enhancing 

diagnostic accuracy for conditions like Parkinson’s disease (PD), essential tremor, and related 

neurodegenerative disorders. In this study, we present a comprehensive approach to analyzing 

tremor and gait dysfunction across the entire body using advanced computer vision 

(MMPose) and signal processing methodologies. By extracting time-domain features, 

applying spectral analysis, and examining temporal dynamics of tremor symptoms, we aim to 

provide detailed  quantitative insights into both motor and gait patterns. Additionally, we 

 



 

illustrate the clinical relevance of our methods through a case study of a 63-year-old male 

diagnosed with PD, treated with repeated sessions of transcranial electrical stimulation. The 

patient’s therapy outcomes, characterized by extended tremor relief lasting up to seven hours 

and notable improvements in rigidity, underscore the utility of our multi-faceted analytical 

framework. Overall, these findings highlight the value of integrating computer vision and 

signal processing for more precise diagnosis and management of tremor-related conditions. 
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1. Introduction 

Tremors are involuntary, rhythmic oscillations or movements of body parts that can affect 

various regions of the body, including the upper extremities (hands, arms, fingers), lower 

extremities (legs, feet), trunk, and head/neck region. They are one of the most common types 

of abnormal movements observed in neurological disorders, and they can significantly impact 

an individual's quality of life (Hallett, 2011). While tremors themselves are not a disease, they 

can be indicative of underlying neurological conditions, such as Parkinson's disease (PD), 

essential tremor (ET), or other neurological disorders (Deuschl et al., 1998). Understanding 

tremors, their causes, and their frequencies is critical for diagnosing and managing these 

conditions, especially given their prevalence in aging populations (Elble, 2013). 

Tremors in Parkinson's Disease 

Parkinson's disease (PD) is a progressive neurodegenerative disorder primarily affecting 

motor function. While the characteristic resting tremor typically begins in the hands, 

manifesting as a "pill-rolling" motion between the thumb and forefinger, PD tremors can 

affect multiple body regions as the disease progresses (Zach et al., 2015). These tremors may 

involve the legs, jaw, tongue, and trunk, creating a more generalized tremor pattern. The 

tremors occur at frequencies between 4-6 Hz, although they can vary among individuals. 

They are most pronounced during rest and often diminish with voluntary movement (Louis, 

2005). 

 



 

The widespread nature of PD tremors reflects the extensive involvement of the brain's motor 

pathways, primarily due to the degeneration of dopaminergic neurons in the substantia nigra 

(Hallett, 2012). This degeneration can lead to both unilateral and bilateral tremors, though 

asymmetry is common, particularly in early stages. Additionally, it's important to note the 

existence of drug-induced parkinsonism, where medications such as antipsychotics, 

antiemetics, or certain calcium channel blockers can induce or exacerbate parkinsonian 

tremors (O'Suilleabhain & Matsumoto, 1998). Conversely, some medications used to treat 

PD, particularly dopamine agonists, may paradoxically worsen tremors in some patients, 

highlighting the complex relationship between pharmacological interventions and tremor 

manifestation (Gerald & Evidente, 2023). 

Parkinson’s disease tremors are not only a source of physical discomfort but also a significant 

cause of disability. They can affect an individual’s ability to perform basic activities such as 

writing, eating, and dressing, leading to a decrease in independence and quality of life 

(Baumann, 2011). Treatment options often involve medications such as levodopa, and deep 

brain stimulation (DBS) remains a well-established surgical intervention, while newer 

non-invasive approaches like transcranial electrical stimulation (tES) show promising results 

(Deuschl et al., 1998). tES techniques can modulate neural activity in targeted brain regions, 

potentially helping to manage tremor symptoms across various neurological conditions. The 

non-invasive nature of tES makes it an attractive option for patients who may not be 

candidates for surgical interventions or prefer less invasive treatments (Hallett, 2011). 

Tremors in Essential Tremor 

Essential tremor (ET) is another prevalent neurological disorder characterized by rhythmic 

shaking, usually in the hands, but it can also affect the head, voice, and sometimes the legs 

(Louis, 2005). Unlike Parkinson's disease, ET is not associated with other significant 

neurological impairments, and it is often familial, meaning it can run in families (Elble, 

2013). ET tremors are typically action-induced, occurring during voluntary movement rather 

than at rest, making it distinct from the resting tremors seen in Parkinson's disease (Gerald & 

Evidente, 2023). The tremors in essential tremor typically occur at 6-12 Hz and are usually 

more noticeable when performing tasks that require fine motor control, such as writing, 

drinking from a glass, or using utensils (Baumann, 2011). 

 



 

While essential tremor is considered less disabling than Parkinson’s disease, it can still have a 

profound impact on an individual’s functional ability and emotional well-being. In severe 

cases, it can interfere with daily activities and lead to social embarrassment (Hallett, 2011). 

The pathophysiology of essential tremor remains less understood, but it is thought to involve 

abnormal brain activity in the cerebellum, the part of the brain responsible for coordinating 

movement (Deuschl et al., 1998). Management of ET includes medications like beta-blockers 

(e.g., propranolol) or anticonvulsants (e.g., primidone), and in some cases, surgical 

interventions such as deep brain stimulation (DBS) and transcranial electrical stimulation 

(tES) techniques (Zach et al., 2015). 

Tremors in Other Neurological Disorders 

Beyond PD and ET, tremors are prevalent in various other neurological conditions, each with 

distinct characteristics and mechanisms. Multiple sclerosis (MS) can produce intention 

tremors due to cerebellar involvement, typically presenting during goal-directed movements 

(Hallett, 2012). Post-stroke tremors may develop as a consequence of cerebellar or thalamic 

lesions, often manifesting as intention or postural tremors (O'Suilleabhain & Matsumoto, 

1998). Psychological tremors, also known as psychogenic tremors, can occur in anxiety 

disorders or conversion disorder, typically presenting with variable frequency and amplitude, 

and often increasing with attention (Gerald & Evidente, 2023). These tremors may be 

accompanied by other psychological symptoms and typically show entrainment with 

voluntary movements (Louis, 2005). 

The Role of Tremor Frequency 

The frequency of tremors plays a critical role in differentiating between various types of 

tremor disorders. While tremors associated with Parkinson’s disease typically occur in the 4-6 

Hz range, those associated with essential tremor typically present at higher frequencies, 

usually in the 6-12 Hz range (Zach et al., 2015). These frequency patterns can aid in the 

clinical differentiation between Parkinson's disease and essential tremor, although overlap can 

occur in some cases (Baumann, 2011). Tremor frequency is often measured using techniques 

like electromyography (EMG) or accelerometry, which can provide valuable diagnostic 

information and guide therapeutic decisions (Elble, 2013). 

 



 

Understanding the frequency of tremors, along with their other characteristics, is crucial for 

proper diagnosis and treatment planning. Tremor frequency not only serves as a 

distinguishing feature between conditions like Parkinson's disease and essential tremor but 

also helps track the progression of these disorders and evaluate the effectiveness of treatment 

options (Deuschl et al., 1998). 

This paper presents an automated approach to analyze tremor data, focusing on extracting 

temporal and spectral features from video-recorded movements processed into numerical 

datasets, considering the full range of tremor manifestations across different body regions and 

neurological conditions (Hallett, 2011). 

 

Case Study Overview 

To demonstrate the practical impact of our methodological approach, we incorporate a case 

study of a 63-year-old male patient diagnosed with Parkinson’s disease in January 2024. His 

primary complaints included a right-hand tremor and pronounced rigidity in the shoulders, 

hips, hands, and lower back. Throughout a series of non-invasive transcranial electrical 

stimulation treatments, administered at electrode positions (C3, C4, F7, F8) and gradually 

increased from 4 mA to 8 mA, he recorded daily observations of tremor relief, typically 

ranging from one to seven hours depending on treatment schedule and medication adherence. 

Videos captured pre- and post-treatment were processed through the MMPose system to 

extract key metrics such as tremor amplitude, PSD in the 3–12 Hz range, and various gait 

parameters including step length and timing. These quantitative measures corroborated the 

patient’s reports of fluctuating yet ultimately improving tremor control and reduced rigidity, 

underscoring how integrated analytics can illuminate both short-term effects and the 

challenges of sustaining symptom relief amid real-world constraints. 

 

2. Methodology 

Data Acquisition 

The data for this study was collected using MMPose, an open-source computer vision-based 

toolkit from OpenMMLab that specializes in pose estimation and tracking. MMPose provides 

comprehensive whole-body analysis capabilities, detecting and tracking key points across the 

 



 

entire human body including hands, face, body, and feet. The system employs deep learning 

models, specifically convolutional neural networks (CNNs), to simultaneously track multiple 

keypoints across different body parts with high precision. 

For hand tremor analysis, MMPose tracked hand movements from video recordings of 

patients experiencing tremors. The software processes each video frame through its neural 

network architecture to detect keypoints on the hands, with particular focus on anatomical 

landmarks such as finger joints and wrist positions. MMPose's modular design allows for 

real-time tracking while maintaining high accuracy in keypoint detection even under varying 

lighting conditions and hand orientations. These keypoints were used to calculate Euclidean 

distances between consecutive positions across frames, serving as indicators of tremor 

amplitudes. The resulting data was stored in a CSV file, with each row corresponding to a 

frame in the video and containing the Euclidean distances between the keypoints. 

For gait analysis portion of the study, MMPose tracked the entire wireframe of the human 

along with their movements from recordings of a patient walking back and forth across a 

relatively flat surface. MMPose employs deep learning to estimate the key points of 2D 

images. The software processed each frame of the video to detect keypoints for the entire 

body, ranging from the face to the heel, and provided fairly precise body part positions over 

time. The recorded keypoints, which were at significantly anatomical landmarks, were used 

to calculate Euclidean distances between consecutive keypoints across frames. These 

distances served as an indicator of tremor amplitudes, providing valuable information about 

the severity and frequency of tremors. The resulting data was stored in a CSV file, with each 

row corresponding to a frame in the video and containing the Euclidean distances between 

the keypoints. Another CSV file was created to store the keypoints of the various positioning 

of the joints found by the MMPose software for future use. Figure 1 provides an overview of 

the data processing workflow used in this study, highlighting the key steps from loading raw 

tremor data to generating frequency and spectral analyses. The diagram demonstrates the 

systematic approach taken to handle missing values, apply preprocessing techniques, and 

extract meaningful features for tremor analysis, ensuring a robust and accurate analysis 

pipeline. 

 



 

 

Figure 1. 

Data Cleaning 

The raw data obtained from the video recordings was subject to a series of pre-processing 

steps to ensure its reliability for subsequent analysis. One of the initial steps was the 

application of the Common Average Referencing (CAR) technique. This method aimed to 

correct for common disturbances or artefacts in the data that could affect the accuracy of 

tremor measurements. By using CAR, we were able to remove common noise sources and 

ensure that the data more accurately reflected the true tremor activity of the patient. 

 Common Average Referencing (CAR) 

 



 

The Common Average Referencing (CAR) method is used to reduce common noise across 

multiple signals by referencing each signal to the average of all signals. For a dataset 

containing N signals the CAR-transformed signal S’
i​ for the i-th signal is computed as: 

S’
i(t) = Si(t) −    ​Sj​(t) 

1
𝑁

𝑗=1

𝑁

∑

Where: 

●​ Si(t) is the original signal at time t for the i-th channel. 

●​ S’i(t) is the CAR-transformed signal at time t for the i-th channel. 

●​ N is the total number of signals (or channels). 

●​     ​Sj​(t)  represents the average of all signals at time t. 1
𝑁

𝑗=1

𝑁

∑

Explanation: 

Original Signal Si​(t): This is the raw data recorded at a specific channel or electrode. 

Average Signal: At each time point t, the average of all signals across the N channels is 

calculated. This average captures the common noise or baseline activity shared across all 

channels. 

 

Explanation: 

Original Signal Si​(t): This is the raw data recorded at a specific channel or electrode. 

Average Signal: At each time point t, the average of all signals across the N channels is 

calculated. This average captures the common noise or baseline activity shared across all 

channels. 

Subtraction: By subtracting the average signal from the original signal, the CAR method 

effectively reduces shared noise or artifacts, enhancing the relative differences between 

channels. 

This method aimed to correct for common disturbances or artefacts in the data that could 

affect the accuracy of tremor measurements. By using CAR, we were able to remove 

 



 

common noise sources and ensure that the data more accurately reflected the true tremor 

activity of the patient. 

 

Further refinement of the data was done using a Gaussian filter, which was applied to 

smooth the Euclidean distance data. The Gaussian filter is a low-pass filter that reduces 

high-frequency noise, which is particularly important for tremor data that may exhibit 

fluctuations due to minor variations in the video recording or environmental factors. This 

process helped improve the signal-to-noise ratio, ensuring that only relevant tremor activity 

was retained for analysis. 

The Gaussian filter is based on the Gaussian function: 

​ 𝐺(𝑥) = (1/ 2πσ2)𝑒(−𝑥2/2σ2)

Where: 

●​ is the Gaussian function value at . 𝐺(𝑥) 𝑥

●​ σ is the standard deviation, which determines the width of the Gaussian kernel and 

controls the degree of smoothing. 

Applying the Gaussian Filter 

To smooth a time-series signal or spatial data: 

1.​ A Gaussian kernel is created using the Gaussian function, centered at zero, with a 

size that typically spans ±2σ. 

2.​ The signal S(t) is convolved with the Gaussian kernel G(x) as:

​ 𝑆'(𝑡) =
𝑥=−𝑘

𝑘

∑ 𝑆(𝑡 + 𝑥) · 𝐺(𝑥)

 Where: 

●​  is the smoothed signal at time . 𝑆'(𝑡) 𝑡

●​  represents the signal values in a window around . 𝑆(𝑡 + 𝑥) 𝑡

●​  is the Gaussian kernel value corresponding to offset . 𝐺(𝑥) 𝑥

●​  is the kernel half-width, often 3σ. 𝑘

 



 

Key Features: 

●​ Weighted Averaging: The Gaussian filter performs weighted averaging, where values 

closer to the center have higher weights, reducing the impact of distant noise. 

●​ Smoothing: High-frequency noise, such as rapid fluctuations, is diminished, leaving 

smoother and more relevant tremor data. 

 

Feature Analysis 

Once the data was cleaned and pre-processed, several key features were extracted to 

characterize the tremor activity. These features are crucial for quantifying tremor severity and 

understanding its underlying dynamics. 

1.​ Amplitude Calculation: Amplitude Calculation: To quantify the severity of the 

tremor, the absolute amplitude of hand movements was calculated for each frame. 

The amplitude is defined as the Euclidean distance between keypoints, representing 

the magnitude of the tremor. This measure allows for an evaluation of how much the 

tremor displaces the hand over time. A higher amplitude generally corresponds to 

more severe tremors, which can be used to assess the progression of the disorder or 

the effectiveness of treatment interventions. 

2.​ Power Spectral Density (PSD): To analyze the frequency characteristics of the 

tremors, a Power Spectral Density (PSD) analysis was performed. The PSD provides 

a visualization of how the power of the tremor signal is distributed across various 

frequency components. For tremors, we focused on the 3-12 Hz frequency band, 

which is typically associated with tremor activity, with the most relevant frequencies 

often falling in the lower range of this band. By performing a Fourier transform on the 

data, we could evaluate the spectral components of the tremor and identify any 

frequency shifts or changes over time. This frequency-based analysis is crucial for 

understanding the nature of the tremor, as different tremor types (e.g., Parkinsonian 

vs. essential tremor) have distinct frequency characteristics. 

3.​ Step Timing Calculation: For calculating the timings taken for the subject to take a 

step, the key positions of the patient’s heels were analyzed. Initially, the data 

 



 

underwent a Gaussian filter to smooth out noise and irregularities. The Gaussian filter 

is based on the Gaussian function: 

​​𝐺(𝑥) = (1/ 2πσ2)𝑒(−𝑥2/2σ2)

Where: 

●​ : Gaussian function value at . 𝐺(𝑥) 𝑥

●​ : Standard deviation, determining the width of the kernel and the degree of σ

smoothing. 

 

Following this, a dynamic threshold was determined based on a rolling window of the 

last 10 frames of the data. This threshold was calculated using the mean (μ) and 

standard deviation σ of heel movement within the window: 

Threshold=  µ
ℎ𝑒𝑒𝑙

+ 𝑘 · σ
ℎ𝑒𝑒𝑙

Where  is a scaling factor. 𝑘

It served to identify whether the heel was stationary, marking a foot strike on the 

ground. The duration of each step was then calculated by measuring the time between 

the strike of one heel and the subsequent strike of the opposite heel. The program 

evaluated all heel position inputs from both legs to calculate the number of frames 

that elapsed between alternating heel strikes. These frame counts were converted into 

time durations using the frame rate of the data.  

 𝑇𝑖𝑚𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =  𝐹𝑟𝑎𝑚𝑒 𝐶𝑜𝑢𝑛𝑡/ 𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒

 

If the calculated step time exceeded a minimally viable threshold (set to 0.5 seconds 

in this instance), it was recorded in 1-D series. This series stores all step times and 

will later be used to plot and analyze the patient’s gait patterns. 

4.​ Swing Timing Calculation: For calculating the timings taken for the subject to take a 

swing, the calculations had to be broken down to each left and right leg. The Gaussian 

filtering was also applied to the dataset. A dynamic threshold was also implemented 

 



 

in the same manner as the step timing, where the mean and standard deviation of heel 

movement from the rolling window of the last 10 frames for the data were used. 

 Eventually, the program categorizes the movements as each leg takes a full swing 

through measuring the time between the strike of one heel and the subsequent strike 

of the same heel once again. The code helps to find the number of frames that had 

elapsed between the heel strikes. The frame count is then converted into time duration 

using the frame rate of the data. If the calculated step time exceeded a minimally 

viable threshold (set to 0.7 seconds for this), it was recorded in two 1-D series that 

stored the durations for each foot separately. These series store all stride times and 

will later be used to plot and analyze the patient’s gait patterns. 

5.​ Step Length Calculation: For calculating the step length, the displacement of the 

patient’s heel position for each step was analyzed. A Gaussian filter was applied to the 

data to smooth out noise and irregularities in the positional data. Following this, a 

dynamic threshold was implemented using the rolling window of the last 10 frames, 

with the mean and standard deviation of the heel positions used to identify significant 

movements indicative of a step. The program later identified the heel strikes for each 

leg by evaluating when the vertical position of the heel fell below and rose above the 

threshold. For each pair of alternating heel strikes from each leg (left-right or 

right-left), the Euclidean distance between the respective heel positions was 

calculated in pixel units. 

Euclidean Distance=  (𝑥
2

− 𝑥
1
)2 + (𝑦

2
− 𝑦

1
)2

 Using the real world measurement from the subject’s known physical height, the 

pixel-length measurement was scaled to a real-world measurement. Results were 

further filtered with the lengths exceeding a minimally viable threshold being 

included in a 1-D series for further analysis. The step length measurement will be 

used to provide more details about the subject’s walking patterns. 

6.​ Stride Length Calculation: To calculate the stride length, the displacement of the 

patient’s heel position was used. A Gaussian filter was applied to the data for 

smoothing out noise and irregularities.  Following this, a dynamic threshold was 

implemented using the rolling window of the last 20 frames, with the mean and 

standard deviation of the heel positions used to identify significant movements 

 



 

indicative of a step. The program later identified the heel strikes for each leg by 

evaluating when the vertical position of the heel fell below and rose above the 

threshold. Consecutive heel strikes from the same leg (left-left or right-right) were 

used to measure the Euclidean distances between the heel positions in pixel units.  

Euclidean Distance=  (𝑥
2

− 𝑥
1
)2 + (𝑦

2
− 𝑦

1
)2

Using the real world measurement from the subject’s known physical height, the 

pixel-length measurement was scaled to a real-world measurement. Results were 

further filtered with the lengths exceeding a minimally viable threshold being 

included in a 1-D series for further analysis. The stride length measurement will be 

used to provide more details about the subject’s walking patterns. 

7.​ Additional Metrics Calculation: Several other metrics were calculated to provide a 

comprehensive view of the tremor characteristics. These included: 

o​ Absolute Average Amplitude: The average magnitude of the tremor over 

time, providing an overall sense of tremor severity. 

o​ Peak Amplitude: The maximum displacement of keypoints within a given 

time window, which helps in identifying the most intense tremor episodes 

Visualization 

The final step in the analysis involved visualizing the cleaned and processed data to better 

understand the temporal and spectral characteristics of the tremor. Several types of 

visualizations were created: 

●​ Time-domain Plots: These plots show the tremor amplitude over time, highlighting 

periods of increased tremor intensity. Time-domain analysis provides a clear picture 

of how the tremor evolves and can reveal patterns, such as the presence of rhythmic 

oscillations that are indicative of specific tremor types (e.g., essential tremor or 

Parkinsonian tremor). 

●​ Power Spectral Density (PSD) Plots: The PSD plots were used to assess the 

distribution of power across various frequency bands, focusing on the 3-12 Hz range 

associated with tremor activity. These plots allowed for the identification of dominant 

frequencies in the tremor signal and enabled the classification of tremor types based 

on their spectral characteristics. 

 



 

 

3. Case Summary 

Patient Information 

●​ Age: 63 

●​ Diagnosis date: January 2024 

●​ Initial symptoms: Right hand tremor, rigidity in shoulders, hips, hands, lower back 

●​ Medication: Levodopa (37.5 mg, 4x daily) 

Methods 

●​ Treatment device: Sphere 

●​ Electrode placement: C3, C4, F7, F8 

●​ Initial parameters: 4 mA, later increased to 8 mA 

●​ Treatment duration: 15 minutes per session 

●​ Treatment period: September 9 to October 24, 2024 

Results 

Tremor Relief Progression 

●​ Initial: 1-1.5 hours post-treatment 

●​ Improved to: Up to 7 hours post-treatment 

Rigidity Assessment 

●​ Initial: 8/10 

●​ Final: 3/10 

In summary, the subject is a 63-year-old male diagnosed with Parkinson's in Jan of 2024. He 

became suspicious of Parkinson's while eating dinner because he could not physically get 

food from his plate into his mouth. His arm and hands simply froze 2-3 inches from his 

mouth. His primary symptoms are right-hand tremor and overall rigidity, with an emphasis on 

his shoulders, hips, hands, and lower back. The subject stated that his tremors cause him no 

pain. His biggest concern, relative to quality of life, is rigidity. 

 



 

Once diagnosed, he was prescribed Levodopa 4 times per day, 37.5 mg per dose. He has 

struggled with intestinal issues and often skips doses because he cannot eat with an upset 

stomach. 

Treatment Details 

Consented treatments began with Sphere on Sept 9th for 15 minutes with electrodes 

positioned at C3 + C4 and F7 + F8 at 4 mA. Ultrasound gel was placed on each electrode. 

The subject stated there was slight discomfort when initially placing the electrodes from the 

pins, but that discomfort faded away in a couple of minutes. He also said he felt no electrical 

sensation at all. He did experience phosphenes if he closed his eyes. In his pre-treatment 

videos, there is an obvious resting tremor in both hands. In his gait video, he is very upright 

with very little arm swing, and short steps. There were multiple breaks in the treatments due 

to his travel schedule, and we did not treat on weekends. 

After 5 days of treatment, the subject was very happy to report his overall rigidity had greatly 

improved. His arms were swinging and stride improved in length and cadence. He plays golf 

and reported, "today I could make a shoulder turn." In addition, post-treatment each day we 

saw full tremor relief beginning for about 1 to 1 1/2 hours and progressing to 4 1/2 to 5 hours, 

i.e., his tremors functionally did not interfere with daily activities, e.g., navigating the 

computer mouse or typing. 

Observations and Outcomes 

●​ Day 8, 9/18/24: Last treatment before his first out-of-town trip. On 9/23/24, he 

reported active tremors, but his upper body and gait felt good. By 9/26/24, he reported 

that gait was okay, but shoulders and upper body were getting stiff again. Treatments 

resumed on 9/30/24 after a 12-day break, with post-treatment relief of 4 ½ hours. 

●​ 10/14/24: Amperage was increased to 8mA. The subject still reported no electrical 

sensation but experienced phosphenes when closing his eyes. After 12 days without 

treatment, the device no longer had an impact on his symptoms. Upon resuming 

treatment, he reported 4 hours of tremor relief and noted a reduction in rigidity from 8 

to 4 on a 10-point scale. 

●​ 10/24/24: On the last day of treatment, the subject reported tremor relief lasting 7 

hours, with rigidity reduced to 3. He stated that the device provided freedom in all 

joints, shoulders, hands, hips, and lower back. 

 



 

Conclusion 

The subject is very happy with the impact Sphere has on his rigidity, his primary concern, and 

while we saw progressive improvement in the right-hand tremor in terms of length of 

post-treatment relief, up to 7 hours, he is not convinced the technology is effective with that 

symptom. The subject is grateful to have had an opportunity to participate in this study and 

looks forward to our development and optimization of the device. 

RESULTS  

Quantitative Tremor Analysis 

Methodology 

Hand tremor was objectively assessed using computer vision techniques applied to pre- and 

post-treatment video recordings. The analysis focused on multiple metrics: 

●​ Data cleaning using noise reduction techniques 

●​ Amplitude calculations 

●​ Power Spectral Density (PSD) analysis in the 3-12 Hz tremor-associated frequency 

band 

Tremor Progression Analysis 

Day 1 

●​ Figure 2: Overall Movement of the Hand: The plot shows a 43.75% reduction in 
overall hand movement, reflecting improved hand stability after treatment.  

 

 



 

●​ Figure 3: Absolute Average Amplitude Comparison: This figure shows the 
absolute average amplitude before and after treatment on Day 1. The reduction of 
11.92% indicates a decrease in tremor severity. 

 

●​ Figure 4: Power Spectral Density (PSD) Comparison: The PSD plot highlights a 
27.96% reduction in the 3-12 Hz frequency band, showing effective reduction in 
oscillatory activity. 

 

 

Day 3 

●​ Figure 5: Overall Movement of the Hand: A 33.33% reduction in average 
amplitude is observed, indicating continued improvement in reducing hand 
movement. 

 

 



 

 

 

Figure 6: Absolute Average Amplitude Comparison: Day 3 shows an impressive 84.03% 
reduction in average amplitude, suggesting significant treatment efficacy 

 

 

. Figure 7: Power Spectral Density (PSD) Comparison: The 78.56% reduction in the 
tremor band power (3-12 Hz) indicates a substantial decrease in tremor activity. 

 

 



 

 

Day 11 

●​ Figure 8: Overall Movement of the Hand: The -200% change reflects increased 
instability in hand movement, implying the treatment was not effective on this day. 

 

●​ Figure 9: Absolute Average Amplitude Comparison: On Day 11, there was a 
-13.72% increase in amplitude, suggesting decreased treatment effectiveness on this 
day. 

 



 

 

 

 

●​ Figure 10: Power Spectral Density (PSD) Comparison: The PSD plot shows a 
2.83% increase in the 3-12 Hz band power, indicating an increase in tremor activity. 

 

 

Day 16 

●​ Figure 11: Overall Movement of the Hand: The plot shows an 84.09% reduction 
in average amplitude, indicating notable improvement in stability.  

 



 

 

 

●​ Figure 12: Absolute Average Amplitude Comparison: There was an 18.83% 
reduction in average amplitude, showing moderate effectiveness. 

 

 

●​ Figure 13: Power Spectral Density (PSD) Comparison: The PSD analysis indicates 
a -53.59% change in tremor power, suggesting increased activity in the 3-12 Hz 
range post-treatment. 

 

 



 

 

Day 20 

●​ Figure 14: Overall Movement of the Hand: The figure shows a 180.57% reduction 
in average amplitude, demonstrating substantial improvement in stability. 

 

 

 

●​ Figure 15: Absolute Average Amplitude Comparison: A 90.57% reduction in 
absolute average amplitude suggests a strong reduction in tremor. 

 

 



 

 

●​ Figure 16: Power Spectral Density (PSD) Comparison: The 99.36% reduction in 
tremor power further supports the effectiveness of the treatment on Day 20. 

 

 

 

 

 

 

 

 

 

 



 

Day 1 vs Day 20 Pre-treatment Comparison 

Side by side comparisons of Day 1 and Day 20 Pre-treatment results. 

  

●​  Figure 17: Overall Movement of the Hand: The plot shows a 93.75% reduction 
in overall hand movement, reflecting significant improve hand stability on first 
and last day pre-treatment. 

 

  

●       Figure 18: Absolute Average Amplitude Comparison: A 77.76% reduction in 
absolute average amplitude suggests a strong reduction in tremor. 

 

 



 

  

  

●       Figure 19: Power Spectral Density (PSD) Comparison: The PSD analysis 
indicates a 94.95% change in tremor power, suggesting decreased activity in 
the 3-12 Hz range on day 20. 

  

  

  

Day 1 vs Day 20 Pre-treatment Comparison 

Side by side comparisons of Day 1 and Day 20 Pre-treatment results. 

 



 

  

  

●​ Figure 20: Overall Movement of the Hand: The plot shows a 92.12% reduction 
in overall hand movement post-treatment on the first and the last day. 

 

 

●       Figure 21: Absolute Average Amplitude Comparison: A 97.69% reduction in 
absolute average amplitude suggests a strong reduction in tremor. 

  

  

  

 



 

  

●       Figure 22: Power Spectral Density (PSD) Comparison: The PSD analysis 
indicates a 99.95% change in tremor power. 

  

 

 

 

 

 

 Overall Hand 

Movement from 

Baseline 

Absolute Average 
Amplitude 

Power Spectral 

Density (3-12 Hz 

Band)  

Day 1 43.75% reduction 11.92% reduction 
 
 

27.96% reduction 

Day 3 33.33% reduction 84.03%  reduction 78.56% reduction 
 

Day 11 -200% change 
(increased 
instability) 

13.72% increase 
 

2.83% increase 

Day 16 84.09% reduction 18.83% reduction 53.59% increase 

 



 

 

Day 20  180.57% reduction 90.57% reduction 99.36% reduction 

 

Interpretation 

The quantitative analysis revealed: 

●​ Inconsistent treatment effects, particularly on Day 11 

●​ Most significant improvements observed on Days 3 and 20 

●​ Substantial reduction in tremor severity by the final treatment day 

Quantitative Gait Analysis 

Methodology 

Gait analysis was analyzed objectively by using video data processed by the MMPose model 

applied to several videos taken over a course of 20 days. The analysis consisted of examining 

several aspects: 

●​ Data cleaning using noise reduction techniques 

●​ Coordinate mathematics to determine positioning of heel 

●​ Analysis to find conclusive results of timings and distances of movement 

 

Gait Progression Analysis 

Step Length and Step Timing: 

Figure 23: Graph of Heel Strike Detection:  

 

 

 

 

 

 



 

 

 

Step Length: 

Figure 24: Graph of Average Step Lengths over Days of Analyses:  

 

 

With the analysis of average step lengths over time, an anomaly was observed on Day 1, with 
a higher step length value compared to proceeding days. This discrepancy is attributed to 
technical inaccuracies during MMPose detection, likely caused by the somewhat unstable 
nature of the MMPose tools in the conditions that the video was shot.  Excluding this 
anomaly, the trend indicates a progressive increase in step length from Day 7 onward. From 
Day 7 to Day 20, there was a 9.92% increase in the step length. 

 

 

Step Timing: 

Figure 25: Graph of Step Time Trends over Days of Analyses:  

 



 

 

 

With the analysis of average step times over the period of twenty days, an anomaly was 
observed on Day 1, with a higher step times value compared to proceeding days. This 
discrepancy is caused by the technical inaccuracies during MMPose detection, likely caused 
by the somewhat unstable nature of the MMPose tools in the conditions that the video was 
shot.  Excluding this anomaly, the trend indicates a stable progression from Day 7 onward. 
The percentage difference between Day 7 and 20 is approximately 3.96% increase in step 
timing. 

 

Stride Length and Swing Time: 

 

Stride Length: 

 

 

Figure 26: Graph of Average Stride Lengths over Days of Analyses:  

 



 

 

The left stride length is displaying a positive trend through Day 7 and 8, while right stride 

length has variation in the middling days, but overall has a relatively stable length in 

comparison Day 1 and 20. From Day 7 to Day 20, there was a 33.86% increase for average 

left stride length and 14.12% increase for right stride length, respectively. 

 

Swing Time: 

Figure 27: Graph of Swing Time Trends over Days of Analysis:  

 

The swing times for the sampling days generally decrease with some variations between Day 
8 and Day 14, but generally display shorter timings. From Day 1 to 20, there was a 6.33% 
reduction in left swing time, 2.21% reduction in right swing time, and 4.15% in overall swing 
time. 

 



 

 

Figure 28: Comparison of Swing Times for Day 1 Session Before Treatment: 

 

Figure 28: Comparison of Swing Times for Day 8 Session Before Treatment: 

 

 

 



 

These graphs display the calculated swing timing ratios for the first 20 seconds from Day 1 
and Day 8.  The swing timings for Day 1 were of a ratio that is higher than Day 8, indicating 
that swing timings were smaller as the treatment progressed. 

 

 

​
Results and Discussion 

The quantitative tremor and gait assessments demonstrated significant but variable 
improvements in motor function that largely mirrored the patient’s daily logs of tremor relief 
and subjective observations. On Day 1 of treatment, computer-vision analysis revealed a 
43.75% reduction in overall hand movement from baseline, supported by the patient’s 
immediate anecdotal feedback that “my hands just stopped shaking for a while, but it came 
back overnight.” By Day 2, the patient observed “absolutely no tremors after therapy,” with 
the effect lasting “two-and-a-half to three hours,” corresponding well with the 33.33% 
reduction in hand-movement amplitude recorded on Day 3. These early sessions underscored 
how short, daily neuromodulation could induce rapid improvements in tremor control, albeit 
inconsistently. 

Progressive enhancements in the duration of tremor relief emerged over the following days, 
aligning with increased amplitude reductions. On Day 4, while the patient admitted he “feels 
no physical difference,” pre–post analyses showed notable changes in gait, including longer 
strides and renewed arm swing. By Day 5, he was able to golf without “shaking when 
gripping the club,” and even made a “shoulder turn” that he had not executed comfortably 
before. Objective metrics reinforced these self-reports: an amplitude drop of 84.03% 
measured previously indicated robust suppression of hand tremor under frequent stimulation. 

A major disruption to this pattern appeared by Day 6, when a 74-hour gap occurred between 
sessions. Tremors had noticeably resurged, and the patient’s own words captured the sense of 
regression: “I can feel more shaking, especially in my right hand, like before we started.” 
However, he noted that stiffness was still improved relative to his pre-therapy state, 
consistent with modest improvements in gait metrics relative to baseline but weaker than Day 
5 data. Interruptions continued to affect overall symptom control, as evidenced on Day 
11—objective measures revealed a −200% change in hand-movement amplitude (indicating a 
worsened tremor compared to baseline), while the patient bluntly observed, “it’s definitely 
getting worse when I skip treatments and skip my meds.” These data collectively underscore 
the necessity for consistent treatment scheduling and stable medication adherence. 

When the patient returned to a more consistent regimen, improvements in tremor control 
reappeared. Day 12 introduced an increased stimulation amplitude (8 mA), which the patient 
found felt “no different” from 4 mA, yet objective analyses eventually documented a 
prolongation of tremor relief to 5 and then 5.5 hours. By Day 16, the patient reported, “I can 
finally tap all my fingers again,” matching an 84.09% reduction in average amplitude, 
although the 53.59% increase in 3–12 Hz tremor power suggested subtle shifts in tremor 
dynamics rather than unmitigated improvement. The most striking results surfaced on Day 

 



 

20, when objective metrics captured a 180.57% reduction in average amplitude and a 99.36% 
reduction in tremor power, as the patient exclaimed: “I’m basically tremor-free for about 7 
hours now—this is a big deal!” He also rated his rigidity at 3 on a 10-point scale, markedly 
lower than early-session values of 8 or higher. These synergistic improvements in rigidity and 
tremor amplitude underpinned a steady increase in step length and more fluid, comfortable 
gait patterns noted in the MMPose-tracked videos, including 33.86% increase for the stride 
from the left legs and 14.12% increase for right leg. 

Collectively, these findings underscore how neuromodulation efficacy strongly depends on 
treatment frequency, medication adherence, and individual physiological responses. The 
patient’s direct quotations reveal not only the objective magnitude of symptom relief but also 
the personal and functional significance of those changes—improved golf performance, 
easier computer use, and alleviation of previously debilitating stiffness. Nonetheless, 
extended breaks from therapy and inconsistent Levodopa dosing compromised the durability 
of improvements. Looking ahead, a more rigorous schedule with fewer interruptions could 
yield more uniform, sustained results. The alignment between objective, quantitative metrics 
and subjective patient statements—such as “I can make a shoulder turn” or “I’m basically 
tremor-free”—reinforces the value of combined data and self-report in evaluating 
non-invasive neuromodulation for Parkinsonian tremors. 

The gait analysis of the patient helped to demonstrate the progressive improvements in 
various metrics over the course of the 20 day treatment period. While there was some 
anomaly data in Day 1, due to technical inaccuracies in MMPose, skewing the early data, 
there was a clearer trend that showed more fluid gait patterns from Day 1 onwards. Step 
length had increased 9.92% between Day 7 and 20, which indicates longer and confident 
strides from the patient, highlighting improved motor control and less rigidity in walking 
patterns. In addition, stride length had also demonstrated notable increase, with a 33.86% 
increase for the left leg and 14.12% increase for the right leg, suggesting efficient walking 
patterns being developed with the aid of the treatment. These findings lie closely with the 
overall subjective self reporting from the patient, who finds it easier to complete activities 
such as walking and golfing. 

Step timing, a measure of the timing between consecutive steps, was overall constant and 
showed a slight 3.96% increase from Days 7 to 20. The increase in timing may suggest a 
more controlled walking pattern from the patient, which would be a reason for their reduced 
stiffness. The overall constancy in the values also helps to point out that with step length also 
increasing, the patient was able to find success in a rhythm for their walking patterns, helping 
to achieve fluidity in movement along with increased coordination. Swing time, a measure of 
the duration an individual leg is in the air for one stride, decreased by 6.33% percent on the 
left side and 2.21% reduction on the right side, giving an overall 4.15% reduction. This 
reduction gives way for interpreting as a means for efficient gait mechanics and better 
coordination with the lower body muscles. These improvements likely are due to the joint 
effects of more fluidity and neuromuscular control induced by the electric stimulations. 
While there have been positive trends noted, the variation in swing timings observed between 
Days 8 and 14 exemplify the potential influence of treatment schedules. 

 



 

With the positive trends in the metrics, some variability during the middle of the treatment 
period were observed in some metrics, including stride length. This could be due to unique 
individual differences such as physiological builds or external factors such as fatigue. In the 
future, it will be important to incorporate work to account for more factors for reducing 
variability and for consistent data collection. Overall, the improvements observed in the gait 
analysis and the addition of patient’s feedback helps to emphasize the importance of 
integration of computer vision-based analytics into Parkinson’s patient mobility data. 

​
Conclusion 

In summary, these findings highlight the potential for computer vision–assisted, non-invasive 
neuromodulation to substantially reduce tremor amplitude and improve gait in patients with 
Parkinsonian symptoms, particularly when administered consistently in conjunction with 
stable medication regimens. The patient’s reported experiences, including extended 
tremor-free periods of up to seven hours by Day 20, were largely corroborated by quantitative 
analyses demonstrating amplitude reductions of over 90% and near-complete suppression of 
tremor-related oscillations in the 3–12 Hz range. In addition, gait analysis revealed 
progressive improvements in step length, step timing, and swing times. These help to indicate 
increased coordination and fluidity in the patients' walking patterns. Nonetheless, the 
fluctuating efficacy observed on days with prolonged treatment gaps underscores the 
challenges of sustaining therapeutic benefits amid real-world constraints. Future research 
should examine the long-term durability of these improvements, refine stimulation protocols 
for individualized patient responses, and evaluate how precise treatment timing can enhance 
outcomes in both motor control and quality of life. 
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