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Abstract—Digital twins represent a paradigm shift in neuro-
science by enabling real-time, individualized modeling of brain
dynamics. In this work, we present a foundational step toward
a closed-loop digital twin architecture of cortical activity using
the Jansen—Rit neural mass model (JR-NMM), driven directly
by real EEG recordings. By injecting multichannel EEG signals
as measurement updates into the model using the Unscented
Kalman Filter (UKF), we dynamically align its intrinsic dynamics
with ongoing brain activity. The UKF jointly estimates hidden
neural states and adapts key biophysical parameters (synaptic
gains A, B, and connectivity C) in real time. This framework
allows us to monitor the evolution of latent cortical states and
simulate biologically plausible EEG signals personalized to the
subject. Experiments across 19 EEG channels show high fidelity
in reconstructing EEG rhythms, with correlation coefficients
exceeding 0.95. These results demonstrate the feasibility of
subject-specific assimilation as a building block for neurophysio-
logical digital twins, opening the door to next-generation brain—
computer interfaces and dynamic neural diagnostics.

Index Terms—Neural mass model, Jansen-Rit model, EEG
state estimation, Unscented Kalman Filter, digital twin, nonlinear
dynamics.

I. INTRODUCTION

The modeling of brain dynamics through EEG measure-
ments is critical for advancing neuroscience, diagnostics, and
brain—computer interfaces. Traditional time-series methods,
such as Fourier or autoregressive analyses, provide descrip-
tive features of EEG rhythms but fail to capture the neu-
ronal mechanisms that generate them [2], [9]. To address
this limitation, EEG synthesis methods have been developed
to reproduce realistic EEG-like signals from computational
models of neuronal populations. EEG synthesis is important
not only for understanding the mechanisms that generate
brain rhythms, but also for creating ground-truth datasets to
validate signal processing and machine learning algorithms,
for testing closed-loop control strategies, and for developing
brain—computer interface applications [1]], [3].

Among these, neural mass models (NMMs) have become
widely used, as they provide biophysically plausible de-
scriptions of excitatory and inhibitory population dynamics.
The Jansen—Rit model [3]], for example, represents a cortical
column with interacting subpopulations and generates EEG
signals through the pyramidal cell output. Such models allow
the construction of synthetic EEG that reflects the mechanisms
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of neuronal oscillations and interactions, thereby bridging
microscopic activity with macroscopic recordings.

When applied to real EEG data, these models enable
model inversion, where the goal is to estimate hidden neural
states and parameters underlying observed activity [31]]. This
line of work was later extended with Bayesian approaches
to connectivity estimation [32]. However, this requires data
assimilation methods capable of handling the nonlinearities
of neural mass models. Linear filters are inadequate, and
although the Extended Kalman Filter (EKF) has been ex-
plored, its reliance on Jacobian-based linearization can result
in poor accuracy in strongly nonlinear regimes. The Unscented
Kalman Filter (UKF) [5], [6] addresses these challenges by
propagating statistical moments through nonlinear dynamics
without linearization, making it well suited for neural mass
model inversion.

In this work, we present a foundational step toward con-
structing a digital twin of brain dynamics by assimilating
patient EEG recordings into the Jansen—Rit model using
the UKF. This framework enables the estimation of hidden
neural states that generate the observed EEG, providing a
personalized, model-based representation of brain activity.
By capturing subject-specific neural dynamics, our approach
highlights the potential of digital twins for individualized
nonlinear state estimation and lays the groundwork for future
applications in personalized neuroscience and brain—computer
interface research [[18]]. Unlike prior studies, which typically
relied on synthetic inputs (e.g., white noise or idealized
stimuli), our framework directly assimilates real multichannel
EEG recordings into the Jansen—Rit model.

II. NOVELTY AND CONTRIBUTIONS

Prior work has demonstrated that nonlinear Kalman filtering
methods can be used to assimilate EEG data into neural
mass models for parameter and state estimation, with the
Unscented Kalman Filter (UKF) generally outperforming the
Extended Kalman Filter (EKF) in terms of stability and
accuracy [4]], [13]], [19]. These studies primarily focused on
effective connectivity estimation and system identification in
neural populations.

In contrast, our work frames neural mass model assim-
ilation as a foundational step toward constructing a digital
twin of brain dynamics. By explicitly linking the Jansen—Rit



model to EEG generation—where the output corresponds to
the difference between excitatory and inhibitory postsynaptic
potentials of pyramidal cells—we emphasize its suitability
for direct EEG personalization. Furthermore, we document
implementation attempts of EKF for the Jansen—Rit model,
where instability and divergence arose due to the Jacobian
linearization step in stiff oscillatory dynamics (see also [4]],
[13] for related discussions). This provides a concrete method-
ological justification for the UKF beyond prior theoretical
comparisons.
Our core contributions are as follows:

1) We frame neural mass model assimilation as a foun-
dational step toward constructing personalized digital
twins of brain dynamics, moving beyond effective
connectivity toward individualized nonlinear state esti-
mation.

2) We explicitly demonstrate the failure of EKF in the
Jansen—Rit model due to Jacobian linearization, thereby
strengthening the methodological case for UKF in oscil-
latory neural systems.

3) We demonstrate real-time, closed-loop assimilation of
EEG into the Jansen—Rit model, estimating latent neu-
ral states directly from real EEG data rather than relying
on synthetic or noise-driven inputs. This represents a key
building block for digital twin development.

4) We employ the UKF not only for latent state estimation
but also for continuous online adaptation of biophys-
ical parameters, enabling subject-specific modeling of
cortical dynamics.

5) We validate our approach by reconstructing EEG signals
with high accuracy across 19 channels, demonstrating
the framework’s robustness in aligning intrinsic neural
dynamics with empirical recordings.

6) To our knowledge, this is among the first demonstrations
of a foundational, data-driven framework for cortical
modeling using real EEG input in combination with a
biophysically grounded model and nonlinear filtering,
establishing the groundwork for future digital twin ar-
chitectures.

Jansen—Rit Neural Mass Model

~

Real EEG
(measurement update)

Unscented Kalman Filter
(state + parameter estimation)

Fig. 1: Closed-loop assimilation framework (a foundational
step toward digital twins). The Jansen—Rit model simulates
latent dynamics, which are corrected by the Unscented Kalman
Filter using real EEG measurements as observations.

Several models have been proposed to simulate EEG, in-
cluding the Wilson—Cowan model [1]], the Wendling model
[8], and the Jansen—Rit model [3]. The Jansen—Rit model is
particularly suitable for EEG studies, as it models the post-

synaptic potentials of interacting pyramidal, excitatory, and
inhibitory subpopulations, and the model output corresponds to
the summed activity of pyramidal cells, which dominates scalp
EEG. For nonlinear filtering, the Unscented Kalman Filter
(UKF) has been shown to outperform the Extended Kalman
Filter (EKF) in stiff and chaotic systems [5]], [6]. Recent
work [18]] demonstrated that state-space estimation using UKF
enables more accurate inference of neural parameters.

III. DIGITAL TWIN FRAMEWORK WITH JANSEN-RIT AND
UKF

A. Why Jansen-Rit?

The Jansen-Rit neural mass model (JR-NMM) simulates a
cortical column by modeling interactions between three pop-
ulations: pyramidal neurons (P), excitatory interneurons (E),
and inhibitory interneurons (I) [3]. It captures alpha rhythms
(8-13 Hz) and is known for its biological plausibility in EEG
generation. Compared to other NMMs, the JR model balances
physiological interpretability with mathematical tractability
and exhibits rich nonlinear dynamics suitable for state esti-
mation [17].

Importantly, the model generates EEG as the difference
between excitatory and inhibitory postsynaptic potentials, di-
rectly linking its latent states to measurable signals [4]]. This
property makes the JR-NMM particularly well suited for
Kalman filtering approaches, where the observation function
must reflect physiological measurements. Furthermore, it has
been widely adopted in the literature for state and parameter
estimation of neural dynamics [[13]], [19]], and remains central
in modern frameworks for digital twins of the brain [24]—-[26].

IV. EXPERIMENT
A. Dataset

EEG recordings were obtained from the EEG During Mental
Arithmetic Tasks (EEGMAT) database [27], recorded with a
23-channel Neurocom system (Ag/AgCl electrodes, interna-
tional 10-20 placement, linked-ears reference). Each subject
contributed artifact-free 60 s segments under rest and mental
arithmetic conditions. Participant inclusion criteria required
normal or corrected-to-normal vision and the absence of psy-
chiatric, neurologic, or substance-related conditions; subjects
were grouped by counting performance (“G”: good, “B”: bad)
as reported in the dataset metadata.

Acquisition details reported by the dataset providers include
a power-line notch at 50 Hz and a setting labeled ‘“high-
pass 30 Hz.” Because such a setting would suppress canonical
EEG rhythms (e.g., alpha), we interpret this as an acquisi-
tion/preprocessing note and did not adopt it in our pipeline.

In this study, we analyzed 10 EEG recordings, focusing
on 19 channels (Fpl, Fp2, F3, F4, F7, F8, Fz, C3, C4,
Cz, P3, P4, Pz, Ol, O2, T3, T4, T5, T6). Preprocessing
consisted of a zero-phase 4th-order Butterworth band-pass
filter (0.5-45 Hz), a 50 Hz notch, and ICA-based artifact
removal when required. The dataset is publicly available under
the ODC Public Domain Dedication and License (PDDL).



B. State-Space Model with Dynamic Parameters

We employ a 9-dimensional state-space form:

T
X = [yOay17y2ay37y47y5aA7B70]
where the first six components represent neural states and
the remaining three are dynamic model parameters (treated
as latent states to be estimated).

1) Differential Equations and Model Description: The
Jansen-Rit neural mass model (JR-NMM) simulates a cortical
macrocolumn that consists of three interacting neural popula-
tions:

o Pyramidal neurons (P) — main output neurons, respon-
sible for generating EEG-like signals.

« Excitatory interneurons (E) — provide excitatory input
to pyramidal neurons.

« Inhibitory interneurons (I) — provide inhibitory input to
pyramidal neurons.

The core principle is to transform presynaptic firing rates
into postsynaptic membrane potentials using second-order
linear differential equations. The nonlinear sigmoid function
maps membrane potentials back into firing rates.

The equations governing this dynamic are:

S(v) = T exp?:&;o — ) (sigmoid: potential to firing rate)

(D
Yo = Y3 2
Y1 = Ya (3)
Y2 = Ys 4
js = AaS(y1 — y2) — 2ays — a’yo 5)
ja = Aa[p(t) + CS(Cyo)] — 2ays — a*y, (6)
Js = BbCS(Cyo) — 2bys — b°ya (7)

a) Variable and Parameter Descriptions::

e Yo: Membrane potential of pyramidal cells due to excita-
tory and inhibitory input.

e y1: Membrane potential of excitatory interneurons.

e 72: Membrane potential of inhibitory interneurons.

e Y3, Y4, ys: First derivatives of yq, y1, and yo, respectively.

o A: Average synaptic gain from excitatory synapses (pyra-
midal to interneurons).

e B: Average synaptic gain from inhibitory synapses (in-
terneurons to pyramidal).

o C': Connectivity constant that scales internal feedback.

o a: Inverse time constant of excitatory PSP.

o b: Inverse time constant of inhibitory PSP.

¢ ¢9: Maximum firing rate.

¢ vo: Membrane potential at 50% firing rate.

o 7: Steepness of the sigmoid function.

« p(t): External input, set to zero in this model.

We set p(t) = 0 to focus on intrinsic oscillations. Parameters
A, B, and C are estimated dynamically using UKF under a
random walk assumption.

2) State-Space Formulation: We define the 9-dimensional
state vector:

Yo
n
Y2
Ys
X = Y4
Ys
A
B
C

The state dynamics are governed by the nonlinear function
f(x):

Ys
Ya
Ys
AaS(y1 — y2) — 2ays — a’yo

x = | AaCS(Cyo) — 2ays — a’y; | +w
BbC'S(Cyo) — 2bys — b*ys
0
0
0

The last three components (A, B, C) evolve via a random
walk and are assumed constant over short intervals, with
process noise w enabling slow adaptation:

w~N(0,Q)
The measurement model is defined as:

zr = h(x) =y1 —y2 +vp  with v, ~N(0, R)

This form is compatible with the Unscented Kalman Filter
(UKF), which uses sigma points to propagate both state and
parameter uncertainties through the nonlinear dynamics.

C. Measurement Model and Output

ze = h(xr) = y1 — vo

This represents the pyramidal cell membrane potential, ap-
proximating EEG.

D. Filter Initialization

The state vector was initialized with six neural states set
to zero and three biophysical parameters (A = 3.25,B =
22.0,C = 135.0) corresponding to canonical Jansen—Rit
values [3]]. The initial covariance P was set to the identity
matrix, representing uniform prior uncertainty across all states.

The process noise covariance () was defined as a scaled
identity matrix, ensuring flexibility to account for unmodeled
dynamics and intrinsic variability. The measurement noise
covariance R was set to 50, reflecting the variance of residual
EEG noise after preprocessing. This value was empirically
tuned, consistent with earlier studies applying Kalman filters
to EEG [13], [19], and sensitivity analysis confirmed that
performance remained stable across R € 1,50, 100.



E. UKF Implementation

Xpg1 = f(Xp) + Wi ¥
z, = h(xg) + Vi )

where wi, ~ N(0,Q) and v, ~ N(0, R). We set Q = 10731
and estimate R from EEG noise [10].

TABLE I: Model Parameters and Initial Values

Value

€ [3,4]

€ [20, 30]
€ [100, 150]
100 s~ 1

Parameter

TE8 T Qe

F. State Vector and Parameter Augmentation

In the EKF implementation, the state vector comprised only
the six neural states of the Jansen—Rit neural mass model,
T
TEKF = [yo Y Y2 Ys Ya ys}

9

where (yo, Y1, y2) denote membrane potentials and (ys, Y4, ys)
their corresponding derivatives. The model parameters
(A, B,C) were fixed to nominal values as reported in the
literature [3]).

In contrast, the UKF employed an augmented state vector
that included both neural states and biophysical parameters,

T
TukF=[Yo Y1 Y2 Y3 ws ys A B C]

allowing continuous online adaptation of parameters in ad-
dition to state estimation. This design enables the frame-
work to remain personalized by adjusting excitatory gain
(A), inhibitory gain (B), and average connectivity (C) as the
system evolves. We restricted adaptation to A, B, C' as these
exhibit high subject-to-subject variability, whereas a, b, vg, r
are relatively well constrained in literature [3]], [16].
Our approach was developed in two stages. First, we im-
plemented an Extended Kalman Filter (EKF) using only the
six neural state variables of the Jansen—Rit model. However,
this implementation proved numerically unstable in oscilla-
tory regimes, with the error covariance diverging rapidly. To
address this, we switched to the Unscented Kalman Filter
(UKF), which avoids Jacobian-based linearization. In addition,
we extended the state vector to include the key biophysical
parameters (A, B, and (), treated as dynamic latent variables
under a random walk assumption. This augmentation enabled
stable, real-time estimation of both neural states and parame-
ters, forming the basis of our proposed framework.
In the EKEF, the error covariance matrix P is propagated at each
step using the standard prediction and update equations [20]].
During the prediction step, P is advanced through the Jacobian
of the dynamics and the process noise covariance (), while
the update step incorporates measurement information and the

observation noise covariance R. These equations govern the
evolution of state uncertainty, which we later use to assess
filter stability by monitoring log(trace(P)).

G. Validation Metrics

To quantitatively assess the performance of the digital twin,
we computed the following metrics:

Correlation coefficient: The Pearson correlation between
real EEG y(t) and reconstructed EEG g(¢):

R SO R IO ) )

S0 — 7S, - §)*

which measures temporal similarity between signals [23].
Mean squared error (MSE): The average squared devia-
tion between real and reconstructed EEG:

1 T

MSE = 2 3" (u(t) - i(1))”,

t=1

(11

which captures absolute amplitude error.
Parameter root mean square error (RMSE): The devi-

ation between estimated parameters 6; and reference values
Hi:

N

RMSE = % 3 (éi - ai)

i=1

2
. 12)
which assesses biophysical parameter estimation accuracy [4].

Spectral entropy (SE): The Shannon entropy of the nor-
malized power spectral density P(f):

SE=—Y_ P(f) log P(f), (13)
7
where P(f) is normalized such that ; P(f) = 1. Spectral
entropy quantifies EEG complexity in the frequency domain
(28]
Peak alpha frequency: The frequency f, € [8,12] Hz at
which the power spectral density achieves its maximum:

fo =arg max P(f),

(14)
fel8.12]

which verifies reproduction of canonical EEG rhythms [29].
These metrics were selected to capture complementary
aspects of digital twin performance:
« Correlation evaluates waveform similarity, ensuring tem-
poral alignment of oscillatory dynamics.
o MSE quantifies absolute amplitude error, reflecting signal
fidelity in scale.
o Parameter RMSE validates that estimated parameters
remain physiologically plausible.
o Spectral entropy ensures reconstructed EEG retains re-
alistic spectral complexity.
o Peak alpha frequency confirms reproduction of canon-
ical 8-12 Hz cortical rhythms in the Jansen—Rit model.
Together, these metrics provide a comprehensive evaluation
across time-domain fidelity, amplitude accuracy, parameter
realism, spectral complexity, and physiological rhythm repro-
duction.



V. RESULTS
A. Time-Domain Reconstruction

Figure [2 illustrates the overlay of real EEG and UKF-
reconstructed signals for an example channel. The recon-
structed signal closely follows the measured EEG across the
entire recording, including transient fluctuations. Similar pat-
terns were consistently observed across all 10 EEG recordings
analyzed, confirming the reliability of the UKF-driven Jansen—
Rit assimilation framework.

Example Channel 1

Fig. 2: Example reconstruction for one EEG channel. Real
EEG (blue) and UKF-reconstructed EEG (orange) show strong
overlap across the trial, including large transients. Comparable
results were observed across all 10 EEG datasets.

To further illustrate the quality of the reconstruction beyond
global overlap, Figure [3] presents a zoomed-in view of a tran-
sient segment. The UKF-driven reconstruction closely follows
rapid fluctuations in the measured EEG, highlighting that the
framework captures fine-scale dynamics and not merely broad
trends.

Fig. 3: Zoomed-in segment of EEG channel showing detailed
alignment between real EEG channel (blue) and UKF recon-
struction (orange). This highlights that the framework captures
rapid transients in addition to large-scale dynamics.

B. Spectral Validation

To validate physiological plausibility, we compared the
power spectral density (PSD) of the real and reconstructed
signals. As shown in Figure {] the UKF-based framework
successfully reproduced the dominant alpha-band peak (~8-
13 Hz), consistent with canonical EEG rhythms. This result
generalized across all 10 datasets. Deviations in broadband
high-frequency content reflected the reduced dimensionality of
the neural mass model, which captures biologically meaningful
oscillations rather than measurement noise.

C. EKF Divergence

We evaluated the Extended Kalman Filter (EKF) as a
baseline. Monitoring log(trace(P)) revealed rapid exponential
growth, exceeding 10% within a few hundred steps (Fig. ,
signifying estimator divergence. This instability arose from
Jacobian-based linearization of the Jansen—Rit dynamics,

PSD Comparison

— Real EEG
Filtered EEG

Power Spectral Density (V~2/Hz)

o 20 £ 60 80 100 120
Frequency (Hz)

Fig. 4: Power spectral density (PSD) comparison between
real EEG (blue) and reconstructed EEG (orange). The UKF-
based framework reproduces the dominant alpha peak across
all datasets. High-frequency differences reflect the limited
dimensionality of the neural mass model.

which are highly nonlinear and oscillatory. In contrast, the
Unscented Kalman Filter propagated sigma points directly
through the nonlinear system, maintaining bounded covariance
and stable estimation of both states and parameters. This
motivated the UKF as the preferred nonlinear filter for digital
twin construction.

EKF Error Covariance Divergence (Exponent)

— log(trace(P))
- Threshold = 1e6

g & 8

Exponent (log trace(P)

300

Fig. 5: EKF error covariance divergence. log(trace(P)) grows
unbounded, exceeding 10° (red dashed line), indicating esti-
mator instability. The UKF avoids this behavior and remains
stable.

D. Channel-Wise Quantitative Metrics

Across 19 channels and 10 EEG datasets, the UKF-based
framework consistently achieved high correlations (> 0.95)
and low MSE values. While such correlations are expected
due to continuous data assimilation, they are not the main
validation target; rather, the framework’s strength lies in gener-
ating stable latent state and parameter estimates that underpin
the digital twin. Table [lI| summarizes key metrics, including
correlation, MSE, peak alpha frequency, spectral entropy, and
parameter RMSE. Importantly, estimated parameters remained
within physiologically plausible ranges (e.g., 4 € [3,4],
B € [20,30], C € [100,150]), consistent with canonical
Jansen—Rit values [3]], [16]]. This stability underscores the
biological interpretability of the estimates and supports the
framework’s role as a foundation for subject-specific digital
twin architectures.



E. Short-Term Forecast Validation

To evaluate whether the filter produces informative latent
states beyond trivial tracking, we conducted a short-term
forecast experiment. Every 5000 samples, assimilation was
suspended and the UKF propagated forward for 10 timesteps
without receiving new EEG input. Forecasted signals were
compared against the real EEG segment of equal length using
correlation and mean squared error (MSE).

Across channels, assimilation yielded correlations above
0.99 with low MSE, as expected from continuous correction.
In contrast, short-term forecasts produced unstable results:
average rolling forecast correlation was —-0.30 + 0.25 and
forecast MSE was 155.6 + 45.2. This discrepancy confirms
that the UKF is not simply memorizing the input but contin-
uously requires assimilation to remain accurate. The forecasts
therefore validate the circularity concern: the filter tracks
real EEG well, but prediction beyond a few steps remains
unreliable due to the low dimensionality of the Jansen—Rit
model.

Fig. 6: Short-term forecast validation for a representative EEG
channel. Every 5000 samples, assimilation was paused and the
UKF propagated forward for 10 timesteps (orange, dashed)
without EEG input. Blue traces show the real EEG over the
same interval. The rapid divergence between forecast and real
signal illustrates that accurate tracking relies on continuous
assimilation rather than long-range prediction.

FE. Summary Statistics

Mean =+ standard deviation across all channels and sub-
jects are reported in Table The UKF-based framework
achieved an average correlation of 0.997 + 0.002, MSE of
0.96 + 1.03, and parameter RMSE of 8.75 £+ 7.35. Spectral
entropy averaged 3.54 + 0.16, consistent with realistic EEG
complexity. While correlations above 0.99 are expected due
to continuous assimilation, complementary measures such as
spectral entropy and peak alpha frequency demonstrate that
the reconstructed dynamics are not trivial overfitting but reflect
meaningful neurophysiological structure.

G. Computational Cost

Each channel required ~28-29 seconds of computation,
resulting in ~9 minutes per subject. Across 10 EEG datasets,

TABLE II: Summary of UKF performance across 19 EEG
channels (10 datasets)

Metric Mean + SD Range
Correlation (-) 0.997 £ 0.002  0.993-0.999
MSE (-) 0.77 &+ 0.73 0.32-3.47
Runtime (s/channel) 28.6 = 0.4 28.1-29.6
Peak Alpha (Hz) 9.6 £ 0.9 8.79-10.74
Spectral Entropy (-) 3.52 £ 0.18 3.03-3.74
Parameter RMSE (-) 9.6 £ 3.6 4.6-15.8

the total processing time was ~90 minutes. This corresponds
to ~0.18 ms per update, more than an order of magnitude
faster than real-time acquisition (3.9 ms/sample at 256 Hz),
demonstrating feasibility for offline digital twin construction
at the single-subject level.

VI. CONCLUSION

We presented a foundational step toward real-time digital
twin architectures by assimilating EEG into a biologically
grounded Jansen—Rit neural mass model using the Unscented
Kalman Filter (UKF). The filter jointly adapts latent neural
states and biophysical parameters, enabling subject-specific
modeling of cortical dynamics. Across 19 channels and 10
EEG datasets, the framework consistently achieved high cor-
relations (> 0.99) between real and reconstructed EEG, while
maintaining parameter estimates within physiologically plau-
sible ranges. Importantly, such high correlations are expected
due to continuous assimilation; however, validation using
spectral entropy, peak alpha frequency, and parameter stability
confirms that the reconstructed dynamics preserve neurophys-
iological meaning rather than reflecting trivial overfitting.
Together, these findings establish UKF-based assimilation as
a critical building block for future digital twin systems in
neuroscience and brain—computer interface research.

VII. LIMITATIONS

Despite demonstrating feasibility, several limitations should
be noted.

First, although the framework was tested across 10 EEG
datasets, the sample size remains modest and does not cap-
ture the full diversity of experimental or clinical conditions.
Broader validation on larger and more heterogeneous datasets,
including seizure recordings, is needed to assess generalizabil-
ity.

Second, the Jansen—Rit model, while widely used, is a
simplified neural mass formulation that abstracts laminar and
spatial detail. Extending the approach to more complex or
multi-scale models could provide richer physiological insights.

Third, each EEG channel was modeled independently, with-
out capturing inter-channel interactions or large-scale network
dynamics. Since functional connectivity is central to brain
function, future extensions should incorporate coupled neural
mass models or graph-based generative approaches.

Fourth, while the UKF demonstrated stability where the
EKF diverged, no direct comparisons were made with al-
ternative nonlinear filtering methods such as particle filters,
ensemble Kalman filters, or variational Bayesian approaches.



Such benchmarking would strengthen the methodological case
for the UKF.

Fifth, both process and measurement noise were modeled
as Gaussian white noise. In practice, EEG noise is often
structured and non-Gaussian, which may affect robustness in
real-world settings.

Finally, computational cost remains non-trivial: processing
one subject (19 channels) required approximately 9 minutes.
Scaling to long recordings or high-density EEG will require
algorithmic optimization and potentially parallel implementa-
tions.

Overall, this study should be viewed as a proof-of-concept
demonstration. A full neurophysiological digital twin will re-
quire network-level coupling, predictive capability, and closed-
loop integration. These remain important directions for future
work, building upon the present foundation.
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